Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Iran J Pharm Res ; 20(4): 1-8, 2021.
Article in English | MEDLINE | ID: covidwho-1579471

ABSTRACT

Coronavirus disease -19 (COVID-19) pandemic, caused by SARS-CoV-2, has gradually spread worldwide, becoming a major public health event. This situation requires designing a novel antiviral agent against the SARS-CoV-2; however, this is time-consuming and the use of repurposed medicines may be promising. One such medicine is favipiravir, primarily introduced as an anti-influenza agent in east world. The aim of this study was to evaluate the efficacy and safety of favipiravir in comparison with lopinavir-ritonavir in SARS-CoV-2 infection. In this randomized clinical trial, 62 patients were recruited. These patients had bilateral pulmonary infiltration with peripheral oxygen saturation lower than 93%. The median time from symptoms onset to intervention initiation was seven days. Favipiravir was not available in the Iranian pharmaceutical market, and it was decided to formulate it at the research laboratory of School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The patients received favipiravir tablet at a dose of 1600 mg orally twice a day for day one and then 600 mg orally twice a day for days 2 to 6. In the second group, the patients received lopinavir-ritonavir combination tablet at a dose of 200/50 mg twice a day for seven days. Fever, cough, and dyspnea were improved significantly in favipiravir group in comparison with lopinavir-ritonavir group on days four and five. Mortality rate and ICU stay in both groups were similar, and there was no significant difference in this regard (P = 0.463 and P = 0.286, respectively). Chest X-ray improvement also was not significantly different between the two groups. Adverse drug reactions occurred in both groups, and impaired liver enzymes were the most frequent adverse effect. In conclusion, early administration of oral favipiravir may reduce the duration of clinical signs and symptoms in patients with COVID-19 and hospitalization period. The mortality rate also should be investigated in future clinical trials.

2.
Iran J Pharm Res ; 20(3): 285-299, 2021.
Article in English | MEDLINE | ID: covidwho-1573056

ABSTRACT

The most common diagnostic method for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Upper respiratory tract samples, including nasopharyngeal swab (NPS), oropharyngeal swab (OPS), saliva and lower respiratory tract samples such as sputum, are the most widely used specimens for diagnosis of SARS-CoV-2 using RT-qPCR. This study aimed to compare the diagnostic performance of different samples for Coronavirus disease 2019 (COVID-19) detection. It was found that NPS, the reference respiratory specimen for COVID-19 detection, is more sensitive than OPS. However, the application of NPS has many drawbacks, including challenging sampling process and increased risk of transmission to healthcare workers (HCWs). Saliva samples can be collected less invasively and quickly by HCWs with less contact or by own patients, and they can be considered as an alternative to NPS for COVID-19 detection by RT-qPCR. Additionally, sputum, which demonstrates higher viral load can be applied in patients with productive coughs and negative results from NPS. Commonly, after viral RNA purification from patient samples, which is time-consuming and costly, RT-qPCR is performed to diagnose SARS-CoV-2. Herein, different approaches including physical (heat inactivation) and chemical (proteinase K treatment) methods, used in RNA extraction free- direct RT-qPCR, were reviewed. The results of direct RT-qPCR assays were comparable to the results of standard RT-qPCR, while cost and time were saved. However, optimal protocol to decrease cost and processing time, proper transport medium and detection kit should be determined.

3.
Int J Environ Res Public Health ; 18(18)2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1409602

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has so far been the most severe global public health emergency in this century. Generally, citizen science can provide a complement to authoritative scientific practices for responding to this highly complex biological threat and its adverse consequences. Several citizen science projects have been designed and operationalized for responding to COVID-19 in Iran since the infection began. However, these projects have mostly been overlooked in the existing literature on citizen science. This research sheds light on the most significant online citizen science projects to respond to the COVID-19 crisis in Iran. Furthermore, it highlights some of the opportunities and challenges associated with the strengths and weaknesses of these projects. Moreover, this study captures and discusses some considerable insights and lessons learned from the failures and successes of these projects and provides solutions to overcome some recognized challenges and weaknesses of these projects. The outcomes of this synthesis provide potentially helpful directions for current and future citizen science projects-particularly those aiming to respond to biological disasters such as the COVID-19 pandemic.


Subject(s)
COVID-19 , Citizen Science , Humans , Iran , Pandemics , SARS-CoV-2
4.
Expert Rev Clin Immunol ; 17(6): 573-599, 2021 06.
Article in English | MEDLINE | ID: covidwho-1160272

ABSTRACT

Introduction: The gold standard for diagnosis of coronavirus disease 2019 (COVID-19) is detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription polymerase chain reaction (RT-PCR), which is expensive, time-consuming and may result in false-negative results. Serological tests can be employed for RT-PCR negative patients, contact tracing, determining the probability of protection against re-infection, and seroepidemiological studies.Areas covered: The main methodologies of serology-based tests for the detection of SARS-CoV-2 including enzyme-linked immunosorbent assays (ELISAs), chemiluminescent immunoassays (CLIAs) and lateral flow immunoassays (LFIAs) were reviewed and their diagnostic performances were compared. Herein, a literature review on the databases of PubMed, Scopus and Google Scholar between January 1, 2020 and June 30, 2020 based on the main serological methods for COVID-19 detection with the focus on comparative experiments was performed. The review was updated on December 31, 2020.Expert opinion: Serology testing could be considered as a part of diagnostic panel two-week post symptom onset. Higher sensitivity for serology-based tests could be achieved by determining combined IgG/IgM titers. Furthermore, higher sensitive serological test detecting neutralization antibody could be developed by targeting spike (S) antigen. It was also demonstrated that the sensitivity of ELISA/CLIA-based methods are higher than LFIA devices.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , Host-Pathogen Interactions , Humans , Luminescent Measurements , Predictive Value of Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL